427 research outputs found

    Reducing the Effects of Detrimental Instances

    Full text link
    Not all instances in a data set are equally beneficial for inducing a model of the data. Some instances (such as outliers or noise) can be detrimental. However, at least initially, the instances in a data set are generally considered equally in machine learning algorithms. Many current approaches for handling noisy and detrimental instances make a binary decision about whether an instance is detrimental or not. In this paper, we 1) extend this paradigm by weighting the instances on a continuous scale and 2) present a methodology for measuring how detrimental an instance may be for inducing a model of the data. We call our method of identifying and weighting detrimental instances reduced detrimental instance learning (RDIL). We examine RIDL on a set of 54 data sets and 5 learning algorithms and compare RIDL with other weighting and filtering approaches. RDIL is especially useful for learning algorithms where every instance can affect the classification boundary and the training instances are considered individually, such as multilayer perceptrons trained with backpropagation (MLPs). Our results also suggest that a more accurate estimate of which instances are detrimental can have a significant positive impact for handling them.Comment: 6 pages, 5 tables, 2 figures. arXiv admin note: substantial text overlap with arXiv:1403.189

    Recommending Learning Algorithms and Their Associated Hyperparameters

    Full text link
    The success of machine learning on a given task dependson, among other things, which learning algorithm is selected and its associated hyperparameters. Selecting an appropriate learning algorithm and setting its hyperparameters for a given data set can be a challenging task, especially for users who are not experts in machine learning. Previous work has examined using meta-features to predict which learning algorithm and hyperparameters should be used. However, choosing a set of meta-features that are predictive of algorithm performance is difficult. Here, we propose to apply collaborative filtering techniques to learning algorithm and hyperparameter selection, and find that doing so avoids determining which meta-features to use and outperforms traditional meta-learning approaches in many cases.Comment: Short paper--2 pages, 2 table

    Missing Value Imputation With Unsupervised Backpropagation

    Full text link
    Many data mining and data analysis techniques operate on dense matrices or complete tables of data. Real-world data sets, however, often contain unknown values. Even many classification algorithms that are designed to operate with missing values still exhibit deteriorated accuracy. One approach to handling missing values is to fill in (impute) the missing values. In this paper, we present a technique for unsupervised learning called Unsupervised Backpropagation (UBP), which trains a multi-layer perceptron to fit to the manifold sampled by a set of observed point-vectors. We evaluate UBP with the task of imputing missing values in datasets, and show that UBP is able to predict missing values with significantly lower sum-squared error than other collaborative filtering and imputation techniques. We also demonstrate with 24 datasets and 9 supervised learning algorithms that classification accuracy is usually higher when randomly-withheld values are imputed using UBP, rather than with other methods

    An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm Usage

    Full text link
    The results from most machine learning experiments are used for a specific purpose and then discarded. This results in a significant loss of information and requires rerunning experiments to compare learning algorithms. This also requires implementation of another algorithm for comparison, that may not always be correctly implemented. By storing the results from previous experiments, machine learning algorithms can be compared easily and the knowledge gained from them can be used to improve their performance. The purpose of this work is to provide easy access to previous experimental results for learning and comparison. These stored results are comprehensive -- storing the prediction for each test instance as well as the learning algorithm, hyperparameters, and training set that were used. Previous results are particularly important for meta-learning, which, in a broad sense, is the process of learning from previous machine learning results such that the learning process is improved. While other experiment databases do exist, one of our focuses is on easy access to the data. We provide meta-learning data sets that are ready to be downloaded for meta-learning experiments. In addition, queries to the underlying database can be made if specific information is desired. We also differ from previous experiment databases in that our databases is designed at the instance level, where an instance is an example in a data set. We store the predictions of a learning algorithm trained on a specific training set for each instance in the test set. Data set level information can then be obtained by aggregating the results from the instances. The instance level information can be used for many tasks such as determining the diversity of a classifier or algorithmically determining the optimal subset of training instances for a learning algorithm.Comment: 7 pages, 1 figure, 6 table
    • …
    corecore